ROB301 Final Project Report

Hailin Wang (1004847142), Ethan Tang (1005110498)
December 4, 2020

1 Introduction

The goal of this project was to autonomously navigate a series of colored “rooms” around a looping track
and stop at designated landmarks. This was accomplished with a combination of Bayesian localization
and a line following algorithm (PID in this case).

The initial position of the robot could not be assumed, meaning that there was no absolute certainty
about the robot’s position at any given time. As a result, the Bayesian localization algorithm was
immensely important as it allowed the robot to accurately guess its position based on what rooms it
previously passed through.

2 Robot Platform

Our robot used two main sensors to traverse its path. These were a Raspberry Pi camera and a color
sensor. The Raspberry Pi camera was used to implement PID control and served as the optimized
variable when following a path. The RGB camera was used to measure RGB values for the robot upon
entering the room.

The ROS environment transmits sensor information by utilizing various ”topics.” Data is continuously
updated to these objects which is then retrieved as updates are detected using callback functions in
the Bayesian class (see code in Appendix). As a result, all measurement data is up-to-date when used
throughout the control loop.

3 Solution Strategies

There are two operating modes for the robot in our solution: line following and room traversal. Line
following is active until the robot reaches a room, at which point the color is measured and the state
prediction and state update are calculated. From there, the robot either performs a “delivery” or
continues to the next room based on the probability it is in the correct place.

3.1 Movement

Basic Movement was completed with the ROS code. We created a node that published to the topic ‘cmd
vel’. Then, by using the Twist message from ROSPy’s geometry msgs package, we could specify the
robot’s parameters such as linear and angular velocity.

TypeofControl |k |k |k
P -

0.50%,
Pl 0.45k, 1.2k /T,
PD 0.80k, 0.125k,T,
Classic PID 0.60k, 2.0k,/T, 0.125k,7,

Figure 1: Tuning method used for our PID control loop

3.2 Control

Control was accomplished with basic sensor information and a PID control loop. As mentioned in our
components, we used a line detector. In our code, the sensor readings were obtained by subscribing to
the ”line idx” topics. The output was an integer varying from 0 to 320 depending on its proximity to
the desired path. This information was used in our PID control loop to calculate the positional error
from which we derived our K constants. To optimize our control loop we tuned the algorithm based on
the Ziegler-Nicholas method (figure 1).

3.3 Estimation

Our localization and state estimation algorithm was based on Bayesian localization. The first part of
the Bayesian algorithm was to perform a state prediction based on the previous states. In our simula-
tion environment, the robot is guaranteed to move forward or backward based on our movement input
in Twist. Therefore the state prediction corresponds exactly to the robot’s probability in the last position.

For the state update of our localization algorithm, we modify the probability of the robot in each
position based on the measurement made. The exact algorithm considers both the topological map of
the office colors and the measurement models. To obtain our measurement mode we used sensor data
from the RGB camera. The subscriber node to the ”camera rgb” topic provided RGB values about the
current color of the environment at the robot’s position. Taking the simple Euclidean distance between
our sensor values and our expected RGB values, multiplying by negative 1, and exponentiating gave
us the probability of the robot to be over a particular color. The exponential was used to restrict the
range of possible probabilities to between 0 and 1. Previously, this was a problem because Euclidean
distance is only an indirect measure of probability with no range restrictions. It is also expected that
the probability of a certain color should decrease as the Euclidean distance increases.

4 Demonstration Performance

Our robot was able to successfully stop and perform the turning maneuver at each location consistently
during the demonstration. At each office location, it stopped within the designated area and delivered
the package properly. Furthermore, the robot did not diverge from the line connected to the offices and
was able to deliver each package traversing the entire course in only one loop. Overall, the robot was
able to accomplish the main task of delivering the packages to each location of the closed-loop path.

5 Potential Improvements

Improve our line following algorithms Our robot had no issues navigating the course and delivering the
objects. However, it performed these tasks at the minimum linear speed required by our demonstration
constraints at 0.1m/s. The main limitation to our robot’s speed was the movement control. When the
robot began moving too fast our tuned PID algorithm was insufficient to retain the robot on the correct
trajectory. Therefore, improving our control algorithm could have a significant impact on both the con-
sistency and efficiency of the robot’s task completion.

Improving the measurement model For our measurement model, we take the instantaneous measure-
ment of the color. The issue with taking one measurement per one office space is the sensor noise within
the system. If we modify the measurement model procedure to take multiple RGB values per office we
can get a better localization algorithm.

6 Conclusion

Upon completion of the project, we have gained substantial knowledge in the field of creating a functional
robot. Through implementing basic movement functions we learned the powerful capabilities of the ROS
framework and its utility as both software for algorithm development and firmware for interacting with
electronics components on the robot. We also learned how to implement a control system for a robot
using PID control. Lastly, we implemented the Bayesian algorithm which we can use any time we need to

build a robot that must locate its position in its environment. Altogether we have gained the fundamental
experience and technical knowledge needed to build a complete, working robot.

7 Appendix

#!/usr/bin/env python

import rospy

import math

import time

from geometry_msgs.msg import Twist
from std_msgs.msg import String
import numpy as np

import re

import sys, select, os

if os.name == ’nt’:
import msvcrt

else:
import tty, termios

def getKey():
if os.name == ’nt’:
return msvert.getch()
tty.setraw(sys.stdin.fileno())

rlist, _, _ = select.select([sys.stdin], [1, [1, 0.1)
if rlist:

key = sys.stdin.read(1)
else:

key = 7’

termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
return key

class BayesLoc:

def __init__(self, PO, colourCodes, colourMap, transProbBack, transProbForward):
self.colour_sub = rospy.Subscriber(’camera_rgb’, String, self.colour_callback)
self.line_sub = rospy.Subscriber(’line_idx’, String, self.line_callback)
self.cmd_pub= rospy.Publisher(’cmd_vel’, Twist, queue_size=1)

self .probability = PO ## initial state probability is equal for all states
self.colourCodes = colourCodes

self.colourMap = colourMap

self.transProbBack = transProbBack

self.transProbForward = transProbForward

self .numStates = len(PO)

self.statePrediction = np.zeros(np.shape(P0))

self.CurColour = None ##most recent measured colour
self.position = -1
self.position_prev = 0

Hailin

self.rate = rospy.Rate(50)
self.twist = Twist()
self.lastError = 0
self.integral = 0

def colour_callback(self, msg):

AR

callback function that receives the most recent colour measurement from the camera.
PP RS

rgb = msg.data.replace(’r:’,’’).replace(’b:’,’’) .replace(’g:’,’’) .replace(’ ’,’’)
r,g,b = rgb.split(’,’)

r,g,b=(float(r), float(g),float(b))

self.CurColour = np.array([r,g,bl)

def line_callback(self, msg):

1)

TODO: Complete this with your line callback function from lab 3.

PP A

self.position_prev = self.position
self.position = msg.data

def waitforcolour(self):
while(1):
if self.CurColour is not None:
break

def measurement_model (self):
if self.CurColour is None:

self.waitforcolour()

dist = np.linalg.norm(self.colourCodes-self.CurColour, axis = 1)
probs = np.exp(-1 * dist * 0.1)

return probs
def statePredict(self, forward):
assume with 100% certainty that the robot will move forward

State prediction
for i in range(O, len(self.statePrediction), 1):

sum = 0O
if i == 10:

lastPos = 0
else:

lastPos =1 + 1
if i ==

forwardPos = 10
else:

forwardPos = i-1
if forward == True:

sum += self.probability[forwardPos]
else:

sum += self.probability[lastPos]
self.statePrediction[i] = sum

def stateUpdate(self):
#rospy.loginfo(’updating state’)

measurement_z_k = self.measurement_model() # How to call this function properly
maximum = np.argmax(self.statePrediction)

for i in range(0, len(self.probability), 1):
self.probability[i] = (measurementModel[z_k[n + 1], int(self.colourMap[i])]
*x self.statePrediction[i])
self .probability[i] = measurement_z_k[self.colourMap[i]] =*
self.statePrediction[i] # Using the new measurement model

This will normalize the values
norm = np.sum(self.probability)
self .probability = self.probability/norm

def go_straight(self):
self.twist.linear.x = 0.1

self.twist.angular.z = 0
self.twist.angular.x = 0
self.twist.angular.y = 0

self.twist.linear.y = 0
self.twist.linear.z = 0
self.cmd_pub.publish(self.twist)
self.rate.sleep()

def follow_the_line_4(self):

des = 320
k_p 0.0045
k_i = 0.0001
k_d = 0.001
self.twist.linear.x = 0.1
self.twist.angular.z

1]
o

]
o

self.twist.angular.x
self.twist.angular.y
self.twist.linear.y = 0
self.twist.linear.z = 0
if not self.position == None:
actual = int(self.position)
error = des - actual
if abs(error)<5
#reset integral if error is small to prevent integral windup
self.integral = 0O
self.integral = self.integral + error
derivative = error - self.lastError
correction = (k_p*error) + (k_i*self.integral) + (k_d*derivative)
self.twist.angular.z = min(correction, 1.82)
self.lastError = error
self.cmd_pub.publish(self.twist)
#rospy.loginfo([self.position,self.twist.linear,self.twist.angular])
self.rate.sleep()

0

def deliver(self):

for i in range(200):
forward = Twist()
forward.linear.x = 0.1
forward.angular.z = 0
self.cmd_pub.publish(forward)
self.rate.sleep()

for i in range(50%2):
forward.linear.x = 0
forward.angular.z = 1.570796/2
self.cmd_pub.publish(forward)
self.rate.sleep()

for i in range(50):
forward.linear.x = 0
forward.angular.z = 0O
self.cmd_pub.publish(forward)
self.rate.sleep()

for i in range(50%2):
forward.linear.x = 0
forward.angular.z = -1.570796/2
self.cmd_pub.publish(forward)
self.rate.sleep()

for i in range(50):
forward.linear.x = 0
forward.angular.z = 0O
self.cmd_pub.publish(forward)
self.rate.sleep()

if __name__=="__main__":

if os.name != ’nt’:
settings = termios.tcgetattr(sys.stdin)

0: Purple, 1: Green, 2: Yellow, 3: Orange, 4: Line
color_maps = [3, 1, 2, 3, 0, 1, 0, 3, 1, 2, 2]
current map starting at cell 2 and ending at cell 12
color_codes = [

[145,145,255], #purple

[72, 255, 72], #green

[255, 255, 0], #yellow

[255, 144, 0], #orange

[133,133,133]] #line

trans_prob_fwd = [0.1,0.9]
trans_prob_back = [0.2,0.8]

rospy.init_node(’final_project’)

bayesian=BayesLoc([1.0/len(color_maps)]*len(color_maps),
color_codes, color_maps, trans_prob_back,trans_prob_fwd)

prob = []

rospy.sleep(0.5)

state_count = 0

runAlgorithm = True

prev_state=None

try:

while (1):

key = getKey()
if (key == ’\x03’):

rospy.loginfo(’Finished!’)
rospy.loginfo (prob)
break

colour detected
if int(bayesian.position) == O:

center the robot

for i in range(20):
forward = Twist()
forward.linear.x = 0.1
forward.angular.z = 0
bayesian.cmd_pub.publish(forward)
bayesian.rate.sleep()

bayesian.statePredict (True)

bayesian.stateUpdate()

rospy.loginfo(["Color Measurement: ",
np.argmin(bayesian.measurement_model())])

rospy.loginfo(["color measurements",bayesian.measurement_model()])

rospy.loginfo(["Probabilities: ", bayesian.probability])

likelyPlace = np.argmax(bayesian.probability)

rospy.loginfo(["index: ", likelyPlace, bayesian.probability[likelyPlace]])

rospy.loginfo(["Color Prediction: ", bayesian.colourMap[likelyPlace]])

desired = [3,9]

if likelyPlace in desired and bayesian.probability[likelyPlace] > .5:
bayesian.deliver()

exit cell

while int(bayesian.position) ==
forward = Twist()
forward.linear.x = 0.1
forward.angular.z = 0
bayesian.cmd_pub.publish(forward)
bayesian.rate.sleep()

else:

bayesian.follow_the_line_4(Q)

except Exception as e:
print("comm failed:{}".format(e))

finally:

rospy.loginfo(bayesian.probability)

cmd_publisher = rospy.Publisher(’cmd_vel’, Twist, queue_size=1)
twist = Twist()

cmd_publisher.publish(twist)

